Sinapses

Sinapse é um tipo de junção especializada em que um terminal axonal faz contato com outro neurônio ou tipo celular. As sinapses podem ser elétricas ou químicas (maioria).



Sinapses elétricas
    
 As sinapses elétricas, mais simples e evolutivamente antigas, permitem a transferência direta da corrente iônica de uma célula para outra. Ocorrem em sítios especializados denominados junções gap ou junções comunicantes. Nesses tipos de junções as membranas pré-sinápticas (do axônio - transmissoras do impulso nervoso) e pós-sinápticas (do dendrito ou corpo celular - receptoras do impulso nervoso) estão separadas por apenas 3 nm. Essa estreita fenda é ainda atravessada por proteínas especiais denominadas conexinas. Seis conexinas reunidas formam um canal denominado conexon, o qual permite que íons passem diretamente do citoplasma de uma célula para o de outra. A maioria das junções gap permite que a corrente iônica passe adequadamente em ambos os sentidos, sendo desta forma, bidirecionais
    Em invertebrados, as sinapses elétricas são comumente encontradas em circuitos neuronais que medeiam respostas de fuga. Em mamíferos adultos, esses tipos de sinapses são raras, ocorrendo freqüentemente entre neurônios nos estágios iniciais da embriogênese. 


 
Sinapses químicas
    
Via de regra, a transmissão sináptica no sistema nervoso humano maduro é química. As membranas pré e pós-sinápticas são separadas por uma fenda com largura de 20 a 50 nm - a fenda sináptica. A passagem do impulso nervoso nessa região é feita, então,  por substâncias químicas: os neuro-hormônios, também chamados mediadores químicos ou neurotransmissores, liberados na fenda sináptica. O terminal axonal típico contém dúzias de pequenas vesículas membranosas esféricas que armazenam neurotransmissores - as vesículas sinápticas. A membrana dendrítica relacionada com as sinapses (pós-sináptica) apresenta moléculas de proteínas especializadas na detecção dos neurotransmissores na fenda sináptica - os receptores. Por isso, a transmissão do impulso nervoso ocorre sempre do axônio de um neurônio para o dendrito ou corpo celular do neurônio seguinte.  Podemos dizer então que nas sinapses químicas, a informação que viaja na forma de impulsos elétricos ao longo de um axônio é convertida, no terminal axonal, em um sinal químico que atravessa a fenda sináptica. Na membrana pós-sináptica, este sinal químico é convertido novamente em sinal elétrico.
    Como o citoplasma dos axônios, inclusive do terminal axonal, não possui ribossomos, necessários à síntese de proteínas, as proteínas axonais são sintetizadas no soma (corpo celular), empacotadas em vesículas membranosas e transportadas até o axônio pela ação de uma proteína chamada cinesina, a qual se desloca sobre os microtúbulos, com gasto de ATP. Esse transporte ao longo do axônio é denominado transporte axoplasmático e, como a cinesina só desloca material do soma para o terminal, todo movimento de material neste sentido é chamado de transporte anterógrado. Além do transporte anterógrado, há um mecanismo para o deslocamento de material no axônio no sentido oposto, indo do terminal para o soma. Acredita-se que este processo envia sinais para o soma sobre as mudanças nas necessidades metabólicas do terminal axonal. O movimento neste sentido é chamado transporte retrógrado.
    As sinapses químicas também ocorrem nas junções entre as terminações dos axônios e os músculos; essas junções são chamadas placas motoras ou junções neuro-musculares.  

 
    Como o citoplasma dos axônios, inclusive do terminal axonal, não possui ribossomos, necessários à síntese de proteínas, as proteínas axonais são sintetizadas no soma (corpo celular), empacotadas em vesículas membranosas e transportadas até o axônio pela ação de uma proteína chamada cinesina, a qual se desloca sobre os microtúbulos, com gasto de ATP. Esse transporte ao longo do axônio é denominado transporte axoplasmático e, como a cinesina só desloca material do soma para o terminal, todo movimento de material neste sentido é chamado de transporte anterógrado. Além do transporte anterógrado, há um mecanismo para o deslocamento de material no axônio no sentido oposto, indo do terminal para o soma. Acredita-se que este processo envia sinais para o soma sobre as mudanças nas necessidades metabólicas do terminal axonal. O movimento neste sentido é chamado transporte retrógrado.
    As sinapses químicas também ocorrem nas junções entre as terminações dos axônios e os músculos; essas junções são chamadas placas motoras ou junções neuro-musculares.  


 Por meio das sinapses, um neurônio pode passar mensagens (impulsos nervosos) para centenas ou até milhares de neurônios diferentes.


A maioria dos neurotransmissores situa-se em três categorias: aminoácidos, aminas e peptídeos. Os neurotransmissores aminoácidos e aminas são pequenas moléculas orgânicas com pelo menos um átomo de nitrogênio, armazenadas e liberadas em vesículas sinápticas. Sua síntese ocorre no terminal axonal a partir de precursores metabólicos ali presentes. As enzimas envolvidas na síntese de tais neurotransmissores são produzidas no soma (corpo celular do neurônio) e transportadas até o terminal axonal e, neste local, rapidamente dirigem a síntese desses mediadores químicos. Uma vez sintetizados, os neurotransmissores aminoácidos e aminas são levados para as vesículas sinápticas que liberam seus conteúdos por exocitose. Nesse processo, a membrana da vesícula funde-se com a membrana pré-sináptica, permitindo que os conteúdos sejam liberados. A membrana vesicular é posteriormente recuperada por endocitose e a vesícula reciclada é recarregada com neurotransmissores. 
Os neurotransmissores peptídeos constituem-se de grandes moléculas armazenadas e liberadas em grânulos secretores. A síntese dos neurotransmissores peptídicos ocorre no retículo endoplasmático rugoso do soma. Após serem sintetizados, são clivados no complexo de golgi, transformando-se em neurotransmissores ativos,  que são secretados em grânulos secretores e transportados ao terminal axonal (transporte anterógrado) para serem liberados na fenda sináptica.
Diferentes neurônios no SNC liberam também diferentes neurotransmissores. A transmissão sináptica rápida na maioria das sinapses do SNC é mediada pelos neurotransmissores aminoácidos glutamato (GLU), gama-aminobutírico (GABA) e glicina (GLI). A amina acetilcolina medeia a transmissão sináptica rápida em todas as junções neuromusculares. As formas mais lentas de transmissão sináptica no SNC e na periferia são mediadas por neurotransmissores das três categorias.
O glutamato e a glicina estão entre os 20 aminoácidos que constituem os blocos construtores das proteínas. Conseqüentemente, são abundantes em todas as células do corpo. Em contraste, o GABA e as aminas são produzidos apenas pelos neurônios que os liberam.
O mediador químico adrenalina, além de servir como neurotransmissor no encéfalo,  também é liberado pela glândula adrenal para a circulação sangüínea.
Abaixo são citadas as funções específicas de alguns neurotransmissores.
·         endorfinas e encefalinas: bloqueiam a dor, agindo naturalmente no corpo como analgésicos.
·         dopamina: neurotransmissor inibitório derivado da tirosina. Produz sensações de satisfação e prazer. Os neurônios dopaminérgicos podem ser divididos em três subgrupos com diferentes funções. O primeiro grupo regula os movimentos: uma deficiência de dopamina neste sistema provoca a doença de Parkinson, caracterizada por tremuras, inflexibilidade, e outras desordens motoras, e em fases avançadas pode verificar-se demência. O segundo grupo, o mesolímbico, funciona na regulação do comportamento emocional. O terceiro grupo, o mesocortical, projeta-se apenas para o córtex pré-frontal. Esta área do córtex está envolvida em várias funções cognitivas, memória, planejamento de comportamento e pensamento abstrato, assim como em aspectos emocionais, especialmente relacionados com o stress. Distúrbios nos dois últimos sistemas estão associados com a esquizofrenia.